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1. Introduction

In recent years, string theory/gauge theory dualities have been proven to be invaluable

tools in understanding strong coupling dynamics of certain quantum field theories. For

any strong-weak type duality, computations that are possible on both sides of the duality

are scarce. In these cases, taking various limits of both sides of the duality comes in

handy, and may provide evidence for the duality. Previous examples of this include the

PP-wave limit of the AdS/CFT correspondence [1], among others. The hydrodynamic limit

could be one such simplifying yet non-trivial limit, where even strongly coupled quantum

mechanical systems behave simply and universally. Hydrodynamics appears to be relevant

to achieving a better understanding of the quark-gluon plasma (QGP) state in heavy

ion collisions at RHIC. Studying near equilibrium phenomena in a hot, strongly coupled

QCD plasma is never easy, even on the lattice. Extracting retarded Green’s functions

from Euclidean lattice computations requires long Minkowski time separations, which calls

for a large number of lattice points [2]. Therefore using a dual description for QCD-like

theories in order to extract transport coefficients may even find practical use in studying

near-equilibrium QCD physics.
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Sometime ago, Policastro, Son and Starinets proposed a prescription for calculating

Minkowskian field theory Green’s functions using the supergravity dual [11]. Since then

an extensive study has been done where, using this prescription, various transport coef-

ficients were calculated from the gravity side corresponding to the D-brane world-volume

theories [3] as well as M2 and M5-brane theories in M-theory [4]. In [5], it was conjectured

that the ratio of shear viscosity to entropy density is bounded from below

η

s
≥ ~

4πkB
= 6.08 × 10−13K.s, (1.1)

where η is the shear viscosity and s is the entropy density. The bound is well satisfied

for weakly coupled systems, which could be understood intuitively by noticing that in a

weakly coupled plasma, the mean free time for the constituents is long. The puzzling

feature shared by every transport coefficient calculation performed so far [8] is that for all

known holographic duals to various supersymmetric gauge theories at finite temperature,

the proposed bound appears to be saturated [3]. This suggests that, at the infinite coupling

limit where the supergravity description is adequate, there exists some sort of universality

in the hydrodynamic description of all of these field theories (their dual being some black

hole in anti-de Sitter space) [6]. It was also emphasized [6] that the universal nature of

the ratio is connected to the universality of the black hole absorption cross section for low

energy graviton scattering, at least for the cases where the AdS near horizon region has a

flat space completion.

Just on dimensional grounds, the bound itself appears to be in harmony with the

observation that η/s is a product of the energy per effective degree of freedom in the field

theory at a t’Hooft coupling g2
Y MN À 1 and a time scale associated with the mean free

flight time of the quasi-particle excitation [6]. According to the Heisenberg uncertainty

principle, this product must be bounded from below by a multiple of ~ in order for the

notion of quasi-particle to make sense. In [7], the universal nature of the ratio was further

established and extended to a large class of supergravity backgrounds where the dual

possesses a translationally invariant horizon. The entire class saturates the bound.

There is no known example where, at the infinite coupling limit, the bound holds

but isn’t saturated. One major motivation behind this work was to investigate whether

there exist example(s) in which, at the strict infinite coupling limit, the viscosity bound

is satisfied but not saturated. A particular setup which could potentially avoid the no-go

theorems discussed in [7], involves supersymmetric gauge theories living on the world-

volume of type II D-branes or membrane and five-brane theories in M-theory at finite

global charge densities. From a lower dimensional prospective this corresponds to black

holes with some finite gauge field strength turned on at the horizon. It is natural to believe

that the hydrodynamic properties of these horizons with a non-zero gauge field must be

different from the“neutral horizons”.

Here we work in the grand canonical description at finite chemical potential corre-

sponding to finite R-charge i.e., 〈j0〉 6= 0 where j0 is the R-charge. Gravitationally, the

R-charge arises from finite transverse rotation from a 10 or 11-dimensional point of view.
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We find that turning on a finite R-charge background increases the viscosity. In the

conclusion section we speculate as to why this happens. To our surprise, we discover that

the viscosity to entropy density ratio η/s, remains the same as that for zero chemical

potential case i.e., 1/(4π) up to forth order in powers of Ω/TH , where Ω is the angular

velocity and TH is the Hawking temperature. This provides an evidence for the saturation

of the bound even for the horizons with a finite gauge field.

The paper is organized as follows. We begin with a lightning review of the hydrody-

namic limit in systems with many degrees of freedom. After reviewing the prescription for

computing Minkowskian retarded Green’s functions in section 3, we discuss the relevant

gravitational background, i.e., R-charged Anti- de Sitter black hole in section 4. Gravita-

tional perturbation theory of AdS4 black holes is the subject of discussion in section 5. In

section 6, we consider 〈TµνTρσ〉 correlation in Minkowskian signature using the prescription

reviewed in section 3. Finally, we proceed to calculate the transport coefficient of interest

here namely the shear viscosity η and η/s in section 7.

2. Hydrodynamic Limit of Quantum Field Theories

Linear response theory is the mathematical theory of the relaxation of small disturbances

around equilibrium where the thermally averaged Minkowskian Green’s functions (re-

tarded, in order to account for causality) of the unperturbed system in d-dimensions fully

characterize the system’s response to the external stimuli

GR
µ1...µj ...(~q) =

∫
ddxe−iq.xθ(t)〈[Q̂µ1...(x), Q̂µj ...(0)]〉β . (2.1)

Here, GR
µ1...µj ...(q) denotes the retarded Green’s function, Qµ1...(x) is the operator corre-

sponding to the conserved current which couples to the external world disturbance, µis

are some spacetime indices and β is the inverse temperature. It is argued, and in simple

cases explicitly shown, that the slowly varying (both in space and time) behavior of the

Minkowskian Green’s functions of interacting field theories has a specific pole structure

imposed by the “hydrodynamic equations”. These hydrodynamic limit conditions are usu-

ally satisfied when local thermal equilibrium is achieved. To create such circumstances, a

fluid must be in its high collision regime where interactions are important to the dynamics.

Hydrodynamics is the study of small, long wavelength and low frequency fluctuations of

a medium in the vicinity of its equilibrium point.1 In this limit all the fine structure of

cutoff-scale physics gets wiped out, leaving only a few transport coefficients at low energies

and long distances. It turns out that the relevant degrees of freedom to a hydrodynamical

description are the charge densities associated with various global symmetries at the UV

cutoff scale, along with the phase of the order parameters if any phase transition exists [9].

This makes charge densities the only relevant degrees of freedom in the hydrodynamic limit.

Transport coefficients appearing in these sets of equations are not themselves part of the

hydrodynamic description but, rather, are inputs. These coefficients could, in principle, be

1Clearly, in a conformal theory at finite temperature, the temperature provides the required length scale

for the system.
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calculated from the zero frequency limit of the two point Green’s functions like (2.1). It is

exactly this type of computations which we will be concerned with in this paper.

A fluid in equilibrium has a spatial energy-momentum tensor of the form Tij = pδij ,

where p is the pressure. Slightly away from equilibrium, extra stresses will be present as

a result of viscous forces. The viscous part of the energy-momentum tensor of a fluid is

proportional to the symmetric-traceless combinations of the momentum gradient of the

fluid. In 2+1 dimensions, it takes the following form

Tij − pδij = − 1

ε + p

[
η(∂iT

0
j + ∂jT

0
i − 2

3
δij∂kT

0k) + ζδij∂kT
0k

]
+ (T00 − ε)

∂p

∂ε
δij ,(2.2)

where ε = 〈T00〉. Also η denotes the shear viscosity which is microscopically inversely

proportional to the mean scattering rate. It is directly proportional to the mean free path

for the effective degrees of freedom at a given value of the coupling. A strongly coupled fluid

will have less viscosity as the mean free path is small and the energy in the perturbation,

taking the system away from its equilibrium, gets redistributed among degrees of freedom

very quickly. This simply means that strongly coupled fluids are better approximations to

the hypothetical notion of an “ideal fluid”.

Also, ζ is the bulk viscosity. In a conformal theory, ζ = 0. The linearized hydrodynamic

equations are given by

∂0T
0i + ∂j(T

ij − pδij) = 0, (2.3)

∂0(T
00 − ε) + ∂iT

0i = 0. (2.4)

These equations along with (2.2) form the complete set of the hydrodynamic equations

specifying the system in its hydrodynamic limit. The eigenfrequency of the system specified

by (2.2), (2.3) and (2.4), which we will be focusing on in this paper, is called the shear

mode and is shown to possess the following dispersion relation

ω = −iDq2, (2.5)

where D = η/(ε + p) is called diffusion constant, ε is the internal energy density of the

system and p is the pressure. Noticing that the dispersion relation (2.5) appears as the

pole structure of GR(~q) in the hydrodynamic limit, enables us to read off the transport

coefficient η, provided the hydrodynamic limit of GR(~q) as well as the energy density and

the pressure are known.

3. AdS/CFT in Minkowski Signature

In order to explore the hydrodynamic limit, one has to find a way to calculate the two

point functions in Minkowskian signature. The celebrated Anti-de Sitter/Conformal Field

Theory duality [10] is naturally formulated in Euclidean signature where the boundary

configuration of the on-shell closed string background in the bulk of AdS acts as a source

– 4 –
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for generating all the Green’s functions of the corresponding boundary operator. Formally,

one can write

〈O(xi1)O(xi2) . . .O(xin)〉 ∝ δnScl[Φcl(x)]

δΦB(xi1) . . . δΦB(xi2)δΦB(xin)
, (3.1)

where ΦB(xi) represents the closed string boundary value associated to the operator O(x)

in the boundary theory and Scl is the on-shell action. Calculating Minkowskian Green’s

functions is problematic due to the characteristics of the boundary value problem for hy-

perbolic operators in Minkowskian signature AdS spacetime. The authors in [11] proposed

a prescription for computing the Minkowskian thermal correlators in the boundary theory.

According to this prescription

GR(~q) = −2F(u, ~q)|u=uboundary
, (3.2)

where u is the radial coordinate in AdS to be defined later, ~q is the momentum on the

boundary, and the imaginary part of F is the Fourier component of the flux associated with

the corresponding AdS fluctuation. Moreover only solutions which behave like an incoming

wave at the horizon are kept. The prescription was further examined and confirmed to

reproduce the desired and known results for the two examples worked out in [11] i.e., zero

temperature N = 4 SYM theory in four dimensions and 2-dimensional finite temperature

CFT dual to the BTZ black holes in AdS3.

4. Gravitational Background

4.1 D = 4, N = 2 U(1)4 Extended Gauged Supergravities

Extended gauged supergravities arise as Kaluza-Klein reductions of both D=10 and D=11

supergravities. Amongst these compactifications, an S7 reduction of D=11 supergravity

to N=8 SO(8) gauged supergravity in D=4 admits a consistent truncation where only

gauge fields in the Cartan subalgebra of the gauge group SO(8), i.e., a U(1)4 subgroup

of the gauge group, survive. This truncation allows for 4-charge AdS black holes in four

dimensions. Such a consistent truncation of D=4, N=8 SO(8) supergravity with U(1)4

gauge group includes four commuting gauge fields, three scalars, and three axions and is

called minimal N=2, U(1)4 supergravity. The Lagrangian for N=2 minimal supergravity

is given by

e−1L = R − 1

2
(∂~φ)2 + 8g2(cosh φ1 + cosh φ2 + cosh φ3) (4.1)

−1

4

4∑

i=1

e~ai.~φ(F i
(2))

2.

where the φi’s are 3 scalars, g is the inverse AdS4 radius. The ~ai are introduced in [12]. It

can be shown that any non-axionic solutions to this minimal supergravity can be uplifted

to 11-dimensional supergravity using the ansatz presented in [12].
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4.2 4-Charge AdS4 Black Holes

The near horizon geometry of the non-extremal M2-brane background which allows for up

to four independent angular momenta (the dimension of the Cartan subalgebra of SO(8))

is given by [12]

ds2
11 = ∆̃2/3

[
−(H1H2H3H4)

−1/2fdt2 + (H1H2H3H4)
1/2(f−1dr2 + r2d~y.d~y)

]
(4.2)

+g−2∆̃−1/3
4∑

i=1

X−1
i (dµ2

i + µ2
i (dφ2

i + gAi
tdt)2),

where

f = −µ

r
+ 4g2r2H1H2H3H4, (4.3)

Hi = 1 +
l2i
r̃2

, i = 1, 2, 3, 4,

Xi = H−1
i (H1H2H3H4)

1/4,

Ai
t =

1 − H−1
i

gli sinhα
,

∆̃ =

4∑

i=1

Xiµ
2
i ,

r =
1

2
(2m sinh2 α)−1/6r̃2,

g2 = (2m sinh2 α)−1/3,

where the µi’s are coordinates on the unit 3-sphere and li are four angular momentum

parameters. The background (4.2) gives rise to a duality between AdS4 × S7 and the M2-

brane theory at finite temperature and finite R-charge, such that in thermal equilibrium

〈j0〉 6= 0, where jµ represents the R-charge current in the boundary theory.

The near horizon limit of the rotating M2-branes background (4.2) under an S7 reduc-

tion gives rise to the four dimensional, 4-charge AdS black holes. As a result, it is more

convenient to work within the framework of N=2 minimal supergravity described above

while bearing in mind that any solution to this theory is an M-theory solution. Therefore

we will focus only on constructing minimal supergravity perturbations.

To simplify the setup without losing much of the generality, we choose to work with

black holes with four equal charges which further simplifies the N=2 minimal supergravity

to just Einstein gravity with a cosmological constant coupled to four Maxwell fields in four

dimensions. In fact, setting the four charges equal makes the dilaton sector decouple and

partially simplifies the system without destroying its essential features.

AdS4 black holes with four equal charges in this theory, with the horizon geometry

being a space of constant curvature, are given by [12]

ds2
4 = −H−2fdt2 + H2(f−1dr2 + r2dΩ2

2,k), (4.4)

f = k − µ

r
+ 4g2r2H4,

H = 1 +
µ sinh2 β

kr
,

– 6 –
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Ai
t =

√
k(1 − H−1) coth β, i = 1, 2, 3, 4,

where k = −1, 0, 1 refers to the curvature of the horizon geometry.2

The case k = 0 needs special treatment and the result is the same background except

the gauge field and the function H are now changed to

H = 1 +
µ sinh2 β

r
, (4.5)

Ai
t =

1 − H−1

sinh β
, i = 1, 2, 3, 4.

The relation between the eleven and four dimensional metric is

l2i g = 2µ sinh2 βi, (4.6)

sinh βi = gli sinh α,

µ = mg5.

In what follows, we choose to work with the flat case k = 0. Upon uplifting to M-

theory, this gives rise to the decoupling limit of the flat world-volume (parameterized by

coordinates on Ω2,0) rotating M2-branes with all four possible rotation parameters going.

Note that the metric now is written as

ds2
4 = −H−2fdt2 + H2(f−1dr2 + r2(dθ2 + dφ2)), (4.7)

where θ and φ are the dimensionless angular variables. 3

Let us introduce a more commonly used [4] “u” coordinate for later use

r =
R2

0

u
, (4.8)

R6
0 =

µ

4g2
,

where u is the new membrane radial coordinate. Note that functions f and H appearing

in (4.4) are now written as

f =
4g2R4

0

u2
(H4 − u3), (4.9)

H = 1 +
µ sinh2 βu

R2
0

.

Here, we record a few quantities associated to the background (4.2) for later usage.

A dimensionless combination y = µ sinh2 β/R2
0 will make an appearance later on. The

angular velocity Ω corresponding to (4.2) is proportional to the chemical potential for the

R-charge as viewed from the dual boundary theory. To calculate Ω, we need to rewrite the

2Note that in spacetimes with AdS4 asymptotics, horizon topology is not restricted to just 2-spheres:the

horizon manifold could be either of the 3 possible spaces of constant curvature.
3The prescription for switching to the dimensionful coordinates x,y used in [4] is to notice that 2gx = θ

and 2gy = φ.
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M-theory embedding of our AdS4 black holes with four equal charges namely (4.2)[12]

ds2
11 = −H−2fdt2 + H2(f−1dr2 + r2d~y.d~y) +

4∑

i=1

(dµ2
i + µ2

i (dφi + gAi
tdt)2). (4.10)

Using definition of Ω

Ωi = − gtφi

gφiφi

, (4.11)

where “i” labels each of the four independent angular velocities, one obtains

Ωi = Ω = −gAi
t = −g

1 − H−1

sinhβ
. (4.12)

The event horizon is located where f = 0. The horizon radius can be expressed as a

power series in sinh β. We will keep terms only up to forth order in sinhβ (or equivalently

y2)

uH = u0 = 1 +
4

3
y + 2y2 + O(y3). (4.13)

The Hawking temperature associated with this horizon is given by

TH =
∂r(H

−2f)

4π
|r=rH

, (4.14)

which leads to

TH = 3
2−2/3

π
(µg4)1/3(1 − 2

3
y − 5

9
y2 + O(y3)), (4.15)

= T0(1 − 2

3
y − 5

9
y2 + O(y3)),

where T0 is the Hawking temperature at Ω = 0. The dimensionless ratio Ω/TH can be

expanded to the second order in y as well

(
Ω

TH
)2 = −24/3π

3
(µg)1/3 sinhβ(1 + y +

14

9
y2 + O(y3)), (4.16)

=
4π2

9
y(1 + y +

14

9
y2 + O(y3)).

Using the above expression and definitions (4.8), one can write y in terms of the ratio

Ω/TH up to forth order as follows

y =
9

4π2
(

Ω

TH
)2 − 2

81

16π4
(

Ω

TH
)4 + . . . (4.17)

– 8 –



J
H
E
P
1
0
(
2
0
0
6
)
0
8
3

5. Perturbing the R-Charged AdS4 Black Holes

5.1 Review of the Reissner-Nordström Black Hole Perturbation Theory

What follows is a lightning review of the perturbation theory of the 4-dimensional Einstein-

Maxwell system with a cosmological constant. We closely follow [13]. Coordinates are

labeled as (t, φ, r, θ) = (0, 1, 2, 3). We follow the mostly minus signature convention for

the spacetime metric. Perturbations are assumed to be generically non-stationary but

axially symmetric. The most general non-stationary, axially symmetric perturbation of an

arbitrary 4-dimensional spacetime can be parameterized as follows

ds2
4 = e2νdt2 − e2ψ(dφ − ωdt − qrdr − qθdθ)2 − e2µrdr2 − e2µθdθ2. (5.1)

It can be shown that the linearized perturbations fall into two distinct decoupled classes.

One set, called “polar perturbations”, consists of δF02, F03, F23, δν, δµr, δµθ while the other

set called “axial perturbations”, includes F01, F12, F13, ω, qr, qθ, where Fab denotes the

Maxwell field strength. We use δ in front of a fluctuation, whenever the corresponding

fluctuation has a non zero background. We will not be considering polar perturbations

here since the relevant perturbations to the viscosity computations fall into the axial per-

turbations class. The equations of motion governing perturbations are most easily written

in the tetrad basis. The explicit form of the tetrad we use here is given by

e
b0
µ = (eν , 0, 0, 0), (5.2)

e
b1
µ = (−ωeψ, eψ,−qre

ψ,−qθe
ψ),

e
b2
µ = (0, 0, eµr , 0),

e
b3
µ = (0, 0, 0, eµθ ).

The hatted indices are flat. Note that all the indices refer to the tetrad basis (5.2) unless

otherwise mentioned.

5.2 The Axial Perturbation Equations of Motion

The axial class of perturbation equations come from the following components of the Ein-

stein and Maxwell’s equations

• (ab)=(12) and (13) components of the Einstein equations,

• ν = φ component of the Maxwell equations,

• Bianchi identities written for (φ, t, r) and (φ, t, θ) permutations.

The total number of equations sums up to five. There are two more equations which are

redundant. In what follows, comma denotes ordinary derivative with respect to the corre-

sponding coordinate. The explicit form of the axial equations of motion for the background

(4.4) are written as follows

(rf1/2F01),r +(H2rf−1/2F12),0 = 0, (5.3)

(rf1/2F01),θ +(H2r2F13),0 = 0, (5.4)

(H2rf−1/2F01),0 +(rf1/2F12),r +(F13),θ = H2r2F02Q02. (5.5)

– 9 –
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where Q0A = ω,A−qA,0 and QAB = qA,B −qB,A and A,B = 1, 2, 3. Taking derivatives with

respect to r, θ and t in equations (5.3), (5.4) and (5.5) yields

(rf1/2F01),r ,r +(H2rf−1/2F12),0 ,r = 0, (5.6)

(rf1/2F01),θ ,θ +(H2r2F13),0 ,θ = 0, (5.7)

(H2rf−1/2F01),0 ,0 +(rf1/2F12),r ,0 +(F13),θ ,0 = H2r2F02Q02,0 . (5.8)

From (5.3) we have

[
fH−2(rf1/2F01),r

]
,r +(rf1/2F12,0 ),r = 0. (5.9)

Utilizing (5.6), (5.7), (5.8) and (5.9) we obtain

[
H−2f(rf1/2F01),r

]
,r +

f1/2

H2r
(F01)θ,θ −rH2f−1/2(F01),0 ,0 = −H2r2F02Q02,2. (5.10)

Now, let us turn to the Einstein equations. From the (12) and (13) components of the

Einstein equations, we obtain

R12 = −1

2
e−2ψ−ν−µθ

[
(e3ψ+ν−µr−µθQ32),θ −(e3ψ−ν−µr+µθQ02),0

]
(5.11)

= −2F01F20.

Using eq(4.4) and eq(5.11) we get

f−1/2

H2r3

[
r2fQ32,θ −H4r4Q02,0

]
= −4F10F02. (5.12)

The component R13 yields

(r2fQ23), r = (H4r2f−1)Q03,0 . (5.13)

Equations (5.12) and (5.13) simplify to

1

H4r4
Q,θ = −(ω,r −qr,0 ),0 +

4

H2r
f1/2F10F02, (5.14)

f

H4r2
Q,r = (ω,θ −qθ,0 ),0 ,

where Q = r2f(qr,θ −qθ,r ). Since ∂t and ∂θ are Killing directions of the unperturbed

background, a typical fluctuation will have the following form

ξ(t, r, θ) = ξ(r)eiσt+iqθ , (5.15)

where ξ denotes a typical fluctuation. 4

4“q” appearing in (5.15) is dimensionless. Therefore to compare our results with [4], one needs to replace

the dimensionless q by q/2g.
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Eliminating ω from (5.14) leads to

∂r

[
f

H4r2
Q,r

]
+

1

H4r4
∂2

θQ − 1

r2f
∂2

t Q =
4

H2r
f1/2F02F10,θ . (5.16)

Now let us return to equation(5.10). Using (5.14), one has

[
H−2f(rf1/2F01),r

]
,r +

f1/2

H2r
(F01)θ,θ +(σ2rH2f−1/2 − 4rF 2

02f
1/2)F01 =

F02

H2r2
Q,θ . (5.17)

Substituting the assumed form for the fluctuations (5.15), one obtains the following pair

of equations

[
H−2f(rf1/2F01),r

]
,r −

q2f1/2

H2r
(F01) + (σ2rH2f−1/2 − 4rF 2

02f
1/2)F01 = i

qF02

H2r2
Q,

∂r

[
f

H4r2
Q,r

]
− q2

H4r4
Q +

σ2

r2f
Q = −i

4q

H2r
f1/2F02F01. (5.18)

It is also useful to work out the second order differential equation satisfied by the fluctuation

ω. In order to do so, the Einstein equation corresponding to R01 needs to be written down

R01 = −1

2
e−2ψ−µr−µθ

[
(e3ψ−ν−µr+µθQ20),r +(e3ψ−ν+µr−µθQ30),θ

]
(5.19)

= 2F02F12.

Using the AdS black hole background fields in (4.4) and simplifying the resulting expres-

sions, one is led to

f1/2

H4r3

(
[H4r4(qr,0 −ω,r )],r +[H4r2f−1(qθ,0 −ω,θ )],θ

)
= −4F02F12. (5.20)

Notice that utilizing the tetrad basis definitions in (5.2), the spacetime F01 and F02 are

given by

F01 = rf1/2F01, (5.21)

F02 = F02,

where F denotes the curved spacetime F . Using the convenient gauge where qr = 0, (5.18)

leads to

d

dr

[
f

H2

d

dr
F01

]
− q2

H2r2
F01 +

σ2H2

f
F01 = i

σH2r2

u2
F02ω,r . (5.22)

Rewriting equation (5.20) in the gauge qr = 0 gives

−(H4r4ω,r ),r +H4r2f−1(qθ,0 ,θ −ω,θ ,θ ) = −4F02F12

f1/2
H4r3. (5.23)

Simplifying the above equation utilizing definitions given in (4.8), we will obtain

(H4ω
′

)
′ − 2

u
H4ω

′ − H4

A(H4 − u3)
(σqqθ + q2ω) =

4H4R2
0

u3f1/2
F02F12, (5.24)
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where “prime” refers to d/du and A = 4g2R4
0. Using (5.14) and (5.3) combined with the

gauge condition and (4.8), one ends up with

A

H4R4
0

(H4 − u3)iqqθ,r = −iσω,r +
4

H2r
f1/2F01F02, (5.25)

(rf1/2F01),r = iσH2rf−1/2F12.

Changing the coordinate system to “u”, equation (5.22) is written as follows

d

du

[
H4 − u3

H2

d

du
F01

]
+

1

A
(

σ2R4
0H

2

A(H4 − u3)
− q2

H2
)F01 = −i

σµ sinhβR2
0

A
ω,u . (5.26)

Denoting h = H4ω′ and using (5.24) and (5.25) one ends up with a second order ODE for

h which has the following form in “u” coordinates

h
′′ −

(
(u3H−4)

′

1 − u3H−4
+

2

u

)

h
′

+

(
2

u2
+

2

u

(u3H−4)

1 − u3H−4

)
h = (5.27)

[
4σ2H6R2

0

A2(H4 − u3)2
F02 +

4H4R2
0

Au2(H4 − u3)
(

q2u2

H2R4
0

− σ2H2

f
)F02

]
A1 +

4u2H2f

A(H4 − u3)R2
0

F
′

02A1,u ,

where, F01 = −iσA1 = −iσAφ using the fact that ∂t is a killing direction and remembering

that we are considering axially symmetric perturbations.

6. Solving The Coupled System of ODEs

6.1 Singularity Structure, Boundary Conditions

The system of coupled differential equations (5.26) and (5.27) forms the fundamental set

of equations to be solved. As is clear, these ODEs are singular at u = u0 where u0 is the

horizon location. In order to isolate the singularity at u = u0, we substitute the following

ansatz into the above ODEs

A1 = (u0 − u)γP (u), (6.1)

h = (u0 − u)νF (u).

The regularity condition, in addition to the incoming boundary condition for the fluctua-

tions F (u) and P (u) at u = u0, will fix the values of γ and ν (as will be computed later)

where u0 is the horizon radius. Substituting the ansatz (6.1)into (5.27) and (5.26) gives

F (u)
′′

+ P(u)F (u)
′

+ Q(u)F (u) = R(u)P (u) + S(u)P (u)
′

,

P (u)
′′

+ U(u)P (u)
′

+ V(u)P (u) = W(u)F (u),

where

P(u) = −
(

2ν

u0 − u
+

(u3H−4)
′

1 − u3H−4
+

2

u

)
, (6.2)

– 12 –



J
H
E
P
1
0
(
2
0
0
6
)
0
8
3

Q(u) =

[
ν(ν − 1)

(u0 − u)2
+

ν

u0 − u
(

(u3H−4)
′

1 − u3H−4
+

2

u
) +

2

u2
+

2

u

(u3H−4)
′

1 − u3H−4
,

− q2

A(H4 − u3)
+

σ2H4R4
0

A2(H4 − u3)2
− 4H2R4

0

Au2(H4 − u3)
F 2

02

]
,

R(u) =

[
4σ2H6R2

0

A2(H4 − u3)2
F02

+
4H4R2

0

Au2(H4 − u3)
(

q2u2

H2R4
0

− σ2H2

f
)F02 −

4γu2H2f

A(H4 − u3)(u0 − u)R2
0

F
′

02

]
,

S(u) =
4u2H2f

A(H4 − u3)R2
0

F
′

02,

U(u) = −
(

2γ

u0 − u
+

3u2 − 4H3H
′

H4 − u3
+ 2

H
′

H

)

,

V(u) =

[
γ(γ − 1)

(u0 − u)2
+

γ

u0 − u
(
3u2 − 4H3H

′

H4 − u3
+ 2

H
′

H
) +

σ2H4R4
0

A2(H4 − u3)2
− q2

A(H4 − u3)

]

,

W(u) =
µ sinh βR2

0

AH2(H4 − u3)
.

As mentioned earlier, ν and γ can be computed by demanding regularity for functions F (u)

and P (u) at u = u0. ν and γ are thus given by the following expressions

γ = ν = ±i
σR2

0

3A
(1 +

2

3
y + y2 + O(y3)). (6.3)

Note that the above expression can only be trusted to second order in sinhβ. The minus

sign corresponds to the incoming boundary condition at the horizon and, according to the

prescription for calculating Minkowskian retarded Green’s functions, is the right boundary

condition.

6.2 Solving the System in Power Series, Domain of Convrgence

In this subsection, we find the solution to the system (6.2) in a series expansion around

u = u0. The aim will be to see if the radius of convergence of the series is large enough to

include the point u = 0, where one is actually interested in calculating the pole structure

of the Minkowskian Green’s functions. As is obvious from the ODEs (6.2), there exist 4

singular points: u = 0, u = u0, u = ∞, and u = −R2
0/(µ sinh2 β). Normally the radius of

convergence of a series solution as viewed on the complex plane of u, extends all the way to

the next neighboring singularity. For small values of β, which is what we are considering

here, the point u = −R2
0/(µ sinh2 β) will be well outside the convergence circle centered

around u = u0 and encompassing u = 0. So there appears to be no obstruction to continue

the expansion to u = 0. Before presenting the solution, let us repackage our coefficients

Q(u) =

[
γ(γ − 1)

(u0 − u)2
+

γ

u0 − u
(

(u3H−4)
′

1 − u3H−4
+

2

u
) +

2

u2
+

2

u

(u3H−4)
′

1 − u3H−4
, (6.4)

− Q2

(H4 − u3)
+

S2H4

4(H4 − u3)2
− 4xu2 sinh2 β

H2(H4 − u3)

]
,
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R(u) =
1

R4
0

[
4Q2x

u2 sinh β

H4 − u3
− 8γx

u sinh β

(u0 − u)H

]
,

S(u) = 8x
u sinh β

HR4
0

,

V(u) =

[
γ(γ − 1)

(u0 − u)2
+

γ

u0 − u
(
3u2 − 4H3H

′

H4 − u3
+ 2

H
′

H
) +

S2H4

4(H4 − u3)2
− Q2

(H4 − u3)

]
,

W(u) =
R4

0 sinhβ

H2(H4 − u3)
,

where x = µ/R2
0, S = σ/(g

√
x), Q = q/

√
x. In the hydrodynamic limit, we will be inter-

ested only in expansions of the functions F and P at most to 3rd order in S and Q. We

need to keep terms proportional to S and Q2 and nothing else. This is because of the

fact that diffusion phenomena always involve two derivatives with respect to the spatial

dimensions, while there is only one derivative with respect to time.

6.3 Numeric-Symbolic Solution

In this section, we present our series solution to the coupled system of ODE’s for the

gravitational and gauge fluctuations.

Let us digress for a moment and focus on how many integration constants one should

expect in the solution. We have two second order ODE’s, which means there are four

integration constants. Two of the four are fixed by requiring the regularity condition for

F (u) and P (u) at u = u0. The remaining two integration constants get fixed by imposing

boundary condition at the boundary of AdS, i.e., at u = 0. Starting from the series solution

ansatz

F (u) =

∞∑

i=0

fi(u − u0)
i, (6.5)

P (u) =

∞∑

i=0

pi(u − u0)
i,

our plan will be to solve for fi = fi(S,Q, y) and pi = pi(S,Q, y) up to a desired order “N”,

as a function of the two remaining integration constants (which will turn out to be f0 and

p0). Here y = (9/4π2)(Ω/TH )2 − 2(81/16π4)(Ω/TH)4 + O((Ω/TH)6) is the combination

introduced in subsection 4.2. These series coefficients will be further expanded to the first

order in S and second order in Q which are the only relevant terms in the hydrodynamic

limit

fi(S,Q, y) = Φi0(y) + Φi1(y)S + Φi2(y)Q2, (6.6)

pi(S,Q, y) = Πi0(y) + Πi1(y)S + Πi2(y)Q2.

We further expand Φki = Φki(y) and Πki = Πki(y) in powers of y

Φki(y) = φki0 + φki1y + φki2y
2, (6.7)

Πki(y) = πki0 + πki1y + πki2y
2.
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The interpretation of the indices is clear. In order to keep our notation simple, we have

dropped the explicit dependence of fi and pi (and consequently all other expansion coeffi-

cients) on f0 and p0. Now all we are required to do will be to compute the coefficients φkil

and πkil.

At this stage, we need to impose boundary conditions. To do this, we will have to use

the perturbation equation (5.24). Remembering that

h = H4ω
′

= (u0 − u)γF (u), (6.8)

and taking the u → 0 limit of (5.24) give rise to

(H4ω
′

)
′ |u→0 −

2

u
H4ω

′ |u→0 −
1

A
(σqq0

θ + q2ω0) = 0, (6.9)

where superscript “0” refers to the boundary values of the fluctuations qθ and ω at the

boundary of the spacetime. Notice that the full solution for F (u) must go to zero at u = 0

in order for F (u) to be a regular solution of (5.24) 5 . Thus (6.9) can be rewritten as

− (H4ω
′

)
′ |u→0 = F10(S,Q, y)f0 + F11(S,Q, y)p0 =

1

A
(σqq0

θ + q2ω0), (6.10)

where, we have substituted the series solution for F . We have also taken into account and

explicitly indicated the fact that, all the series coefficients are expressed as a function of

S,Q, y as well as f0 and p0. Similarly, taking the u → 0 limit of (6.1) gives

P (u)|u→0 = P10(S,Q, y)f0 + P11(S,Q, y)p0 = A0
1, (6.11)

where A0
1 refers to the boundary value of A1.

Equations (6.10) and (6.11) provide us with a system of two linear equations for two

unknown f0 and p0 which fixes the integration constants f0 and p0 in terms of the boundary

values q0
θ and ω0.

The diffusion constant denoted by D is the location of the Gtx,tx(q, σ, y) pole which is

ultimately related to the shear viscosity through the relation

D =
η

ε + p
. (6.12)

The pole is given by the dispersion relation

σ = −iDq2. (6.13)

One can easily convince oneself that the location of the desired pole is the zero of the

determinant of a 2 by 2 matrix Γ made out of P10, P11, F10 and F11

Γ =

(
P10 P11

F10 F11

)
.

5In our series solution F (u=0) = O(y3), which is zero since we have only kept up to two powers of y at

every step of our computations.
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The condition det(Γ) = 0 gives rise to the following pole structure

S = −iλ(y)Q2 + O(y3). (6.14)

In order to compute D, we need to switch to dimensionful quantities. Remembering that

S = σ/(g
√

x), Q = q/(
√

x), one can write (6.14) as

σ

(2πT0)/3
= −iλ(y)(

q

(2πT0)/3
)2, (6.15)

where T0 denotes the Hawking temperature at zero chemical potential. 6 Comparing to

the dispersion relation (6.13), one deduces

D =
3λ(y)

2πT0
. (6.16)

In fact, λ = λ(y) is the quantity we calculate numerically as an expansion in y.

7. Calculating η/s

We proceed to calculate the shear viscosity using the relation (6.12). Conformal symmetry

implies ε = 2p, leading to

η = 3pD =
9pλ(y)

2πT0
, (7.1)

where we have used D = 3λ(y)/(2πT0) from the previous chapter. Note that in the grand

canonical ensemble one has

p = −∂ΞM2

∂V
, (7.2)

where ΞM2 = E − TS − JΩ is the Gibbs free energy for the spinning membrane. The

Gibbs free energy for M2 brane with four angular momentum turned on, can be easily

calculated [14]. Expanding to fourth order in powers of Ω/TH , one gets

p = −ΞM2

V
=

27/2π2

34
N3/2T 3

H

[
1 +

9 × 4

8π2
(

Ω

TH
)2 +

27

16π4
(

Ω

TH
)4 + . . . .

]
. (7.3)

Similarly, the entropy density is given by

s = − 1

V

∂ΞM2

∂T
=

27/2π2

33
N3/2T 2

H

[
1 +

9 × 4

24π2
(

Ω

TH
)2 − 27

48π4
(

Ω

TH
)4 + . . . .

]
. (7.4)

Assuming

λ(y) = λ0 + λ1y + λ2y
2 + O(y3), (7.5)

6Note that in order to compare our results at leading order with [4], we need to send q → q/(2g).
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the ratio η/s becomes

η

s
=

3λ0

2π

(
1 +

9

4π2
(
2

3
+

λ1

λ0
)(

Ω

TH
)2 + (7.6)

+
81

16π4
(−5

9
− 4

3

λ1

λ0
+

λ2

λ0
)(

Ω

TH
)4 + . . .

)

=
3λ0

2π
(1 + ζ2(

Ω

TH
)2 + ζ4(

Ω

TH
)4 + . . .).

As we mentioned in the previous chapter, λ is the quantity we compute numerically.

Thus, calculating λ will provide us with the corrections to the ratio at zero chemical

potential i.e., 1/(4π).

Surprisingly, the following numerical analysis presented here illustrates that the second

and fourth order corrections to the η/s ratio asymptotes to zero as we keep more and more

terms in the Taylor expansion for F and Aφ. This clearly signals a saturation of the bound

even in the presence of a non zero chemical potential.

The ratio at zero chemical potential has been calculated before to be 1/(4π) [4], there-

fore we expect to get λ(y = 0) = 1/6 at the leading order. Of course, this only serves as a

consistency check to assure us that the numerics have been done carefully. Below, we have

plotted λ0 = λ(y = 0) and ζ2 versus N , the number of terms in the Taylor expansions for

F and Aφ i.e., (6.5). The coefficient ζ4 also runs to zero rather quickly with increasing N

as seen from the figure 3. Figure 4 is the plot of shear viscosity versus y for N= 30.

Figure 1: λ plotted Vs. N for Ω = 0.
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Figure 2: ζ2 plotted Vs. N.

Figure 3: ζ4 plotted Vs. N.
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Figure 4: Viscosity Vs. y, plotted only for small values of y. η0 is the shear viscosity at y = 0.

8. Conclusion and outlook

The result presented in this paper satisfies the viscosity bound conjecture proposed by

Policastro, Son and Starinets [5]. The leading finite chemical potential corrections to the

viscosity itself turn out to be positive. The ratio η/s remained unchanged up to fourth

order in Ω/TH signalling the saturation of the bound. An interesting question is why

shear viscosity increases even though the system is literally at “infinite coupling”. Another

way of putting this is to say, what could make an “infinitely coupled” system , “less

infinitely coupled” (in order for the viscosity to increase)! One could speculate that the

reason behind this enhancement in shear viscosity might lie in some screening effect for

the color interaction mediator at finite chemical potential. At non zero chemical potential

i.e., when the number of various particle species carrying different R-charge is imbalanced,

the “gluons” mass receives correction from the chemical potential which could result in

screening . This screening of the color charge weakens the effective interactions in the

plasma which ultimately leads to a bigger mean free path. When this paper was being

written, I became aware of two other works [20], [21] in preparation on AdS5 with similar

results. While for the membranes (which were studied in this paper), no gauge theory

description exists, for the AdS5 system there is a gauge theory living on the world-volume of

D3-branes. Using the conformal invariance of N= 4 SYM theory, only based on dimensional

grounds, one could argue that the gluons mass receives corrections which are proportional
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to µ, where µ is the chemical potential 7. A similar situation occurs in perturbative QCD.

In this case, one could speculate with more confidence that the screening effect may be

the true reason for an increase in the shear viscosity of a hot gauge theory plasma at finite

chemical potential. Of course, the theory under consideration here is strongly coupled so

perturbative notions may no longer be applicable.

It was argued and quantified by Karch [15] that the conjectured viscosity bound is

connected to Bousso’s Generalized Covariant Entropy Bound (GCEB). Given such an in-

teresting interrelation, one could reinterpret the viscosity bound as a non-gravitational and

empirical window to the realm of quantum gravity. It turns out that the viscosity bound

is exactly what matter is required to obey in order for gravity to modify the light-sheets

(motion of the viscous fluid results in a stress Tij-generated curvature) to prevent the

GCEB from a catastrophic violation. The current formulation of the GCEB suffers from

a number of problems including “the species problem”. The species problem is the simple

statement that the entropy of a system of field(s) confined in a region of space can grow

simply by increasing the number of particle species while keeping the total energy fixed.

This would lead to a violation of the GCEB. An exciting question [16] would be to ask

whether violating the GCEB through the species problem, for instance, would lead to a

violation of the viscosity bound. To address this question one has to perform similar cal-

culations as outlined in the present paper for supergravity duals to the gauge theories with

large Nf [17] (see also [19]) at “finite temperature”. A zero temperature realization was

considered in [19], where the field theory corresponding to the localized D2-D6 intersection

is an N = 4, d = 3 super Yang Mills gauge theory coupled to N6 hypermultiplets in the

fundamental of the gauge group, where N6 is the number of D6-branes. N6/N2 is kept fixed

while N2, N6 À 1. The full supergravity background (i.e., D6-flavor branes including back-

reaction) has been worked out in [18], where the fact that uplifted D6-branes to M-theory

has a Taub-NUT space component proves to be helpful. The non-extremal version of [18]

is not yet known and it seems like a daunting task to carry out. It would be interesting

to find the background at least in the form of an expansion series in the vicinity of the

horizon. Extensions of similar sets of computations would teach us a lot about whether

there is a violation of the viscosity bound at large Nf .

Needless to say, finding analytic solutions to the coupled differential equations here

would be invaluable as it could reveal analytic structure of the viscosity as a function of

Ω/TH .

There is no GN in the statement of the bound. This simply indicates that the con-

jecture is a statement about quantum mechanical matter without any reference to gravity.

So it is natural to expect the existence of a proof or counterexample for the bound which

only involves weakly gravitating quantum physics. The relevance of gravity seems to be

solely a consequence of the fact that in order to get down to the saturation limit of the

bound, one is required to go to exceedingly high values of the coupling which, in the light

of AdS/CFT, is mapped to the physics of highly gravitating objects, i.e., black holes in

Anti de Sitter space.

7µ has dimension mass. Note that, this effect is on top of the usual finite temperature corrections.
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